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4.1 Summary
This report summarizes the first year of research activities in the field of image and video analysis algorithms for coastline security. Our work has been focused primarily on algorithms and techniques for motion detection, object tracking, and object classification in maritime scenes. After having investigated existing algorithms in the literature, we proposed and implemented robust algorithms for scene segmentation, object detection, tracking, and classification in video sequences with complex, moving background. 

The goal of a visual surveillance system is to detect abnormal object behaviors and to raise alarms when such behaviors are detected. After moving objects are detected, it is essential to classify them into pre-defined categories, so that their motion behaviors can be appropriately interpreted in the context of their identities and their interactions with the environment. Consequently, object classification is a vital component in a complete visual surveillance system.

In this project on coastline security, the objects of interest are ships. We formulate the task of ship classification in the standard framework of pattern recognition: 

1) 402 instances of ship regions were collected from surveillance video, and were classified into 6 types by human observers. 

2) The shape feature of each region was extracted using MPEG-7 region-based shape descriptor. 

3) A classification algorithm is applied to classify ships based on the similarity of their shape features. 

4) The classification performance was evaluated using cross validation and the optimal parameters were determined.

We have applied two commonly used classification algorithms (k-Nearest-Neighbor algorithm and artificial neural network) and compared their performance based on the mean accuracy of ten stratified ten-fold cross validation.

For k-Nearest-Neighbor algorithm, we have performed combinatorial experiments to examine the effect of the following factors on classification performance: version of k-Nearest-Neighbor algorithm (standard voting or distance-weighted voting), type of distance measure (L1​ or L2), and type of cross validation (leave-one-out or ten-fold or stratified ten-fold). The experimental results do not reveal any significant performance differences between standard voting and distance weighted voting. L1 distance (city block distance) is preferred to L2 distance (Euclidean distance) for computing the similarity of shape between ship regions, and the recommended number of nearest neighbors is 4. The recommended parameters for the shape descriptor are: m = 24 (the number of angular directions); n = 12 (the number of radial scales). The classification accuracy of k-Nearest-Neighbor algorithm based on stratified ten-fold cross validation is about 91%, which compares favorably with existing work. k-Nearest-Neighbor algorithm outperforms artificial neural network, and takes less computation time.

The proposed classification procedure based on MPEG-7 region-based shape descriptor and k

Nearest Neighbor algorithm has the following advantages:

• MPEG-7 region-based shape descriptor is robust to noise and tolerant to objects with holes and objects fragmented into several components. It can be applied to extract shape features from not only ships, but also other rigid objects, such as airplanes, vehicles, etc.

• k-Nearest-Neighbor algorithm is scalable to the size of the data set. When new labeled cases are added to the case library, it is not necessary to re-build the classifier, which is often computationally expensive for other classification algorithms.

• k-Nearest-Neighbor algorithm can provide a meaningful interpretation of the classification results by showing the similar cases retrieved from the library.

• The computation cost of k-Nearest-Neighbor algorithm is reasonable in comparison to other algorithms.

The proposed classification procedure can be trained off-line to tune the parameters for a specific surveillance domain, and then integrated into a real-world visual surveillance system as the object classification module. In a production system, the input to our module should be a binary image highlighting the region corresponding to the object to be classified. The input will be provided by the object detection and tracking modules, which are currently being developed by other members of our team. The output is a classification label corresponding to a predefined object type. Since we have not used any constraints specific to ships, the module can also be applied to the classification task of other rigid objects, such as vehicles, airplanes, etc.




4.2 Introduction

4.2.1 Project Description

This report describes the work involved in the development of a video surveillance system for the Center of Coastline Security Technology. The ultimate goal of our work is to provide semi-automatic tools to monitor marine traffic at key locations, analyzing the contents of incoming video streams, detecting potential threats, and triggering the corresponding action.

The video surveillance system is decomposed in two modules (Fig. 1), whose main goals are:

1. Detect and track objects of interest (e.g., ships, personnel, and persons on the coastline) from an incoming video stream.

2. Recognize and classify their behaviors as normal or abnormal, and take necessary actions (e.g. ,raise alarms) in the case of abnormal behaviors.
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Figure 4.1. A generic video surveillance system: block diagram.

Our efforts during Year 1 of the grant have been focused mostly on algorithms and techniques for implementing Module 1 (Motion Detection and Tracking). In spite of many recent advances in this field, current technologies for Module 1 may not be suiTable 4. for the Center’s surveillance and detection needs. Significant efforts have been spent on designing, implementing, and testing robust algorithms for scene segmentation and object detection and tracking in video sequences with complex, moving background. 

Recognition of normal and abnormal patterns is a domain-specific and challenging task, since computer recognition of behavior involves building complicated temporal and spatial models. Additionally, it requires a substantial amount of domain knowledge and an adequately-sized training data (recorded experiences) in order to achieve practical usability and foster benefits. Consequently, after having obtained successful results for Module 1, our focus is on addressing the problems of Module 2 (Behavior Recognition).

4.2.2 Project Scope and Objectives 

This project is part of the Center of Coastline Security Technology at Florida Atlantic University. It is expected to be integrated at the output of the video capture stage developed by Dr. Bill Glenn’s group. The objectives for Year 1 are:
· Explore recent literature on object detection, tracking, classification and recognition
and complete a survey, with special emphasis on coastline security.

· Based on the literature survey, implement a number of most promising
algorithms for the target domain. 

· Develop and implement domain-specific enhancements to the algorithms for detection and tracking of objects present in the input video sequence. The algorithms will be tuned for improved performance in coastline surveillance. The uniqueness of the proposed work will also be reflected in the domain-specific optimization of the video processing algorithms.

· Explore efficient approaches to obtain labeled training examples and
estimate parameters for object classifiers. 

4.2.3 Overview of Visual Surveillance

Visual surveillance has been an active research field, due to its crucial role in helping law enforcement agencies to fight against crime and terrorist activities. A visual surveillance system typically works in the following essential stages: 

1) Moving objects are detected from the surveillance video. Background subtraction is a common and effective technique when the camera is fixed. It is also applicable for mobile cameras if the motion of the camera can be computed to compensate for the motion in the video. This stage is crucial since undetected objects cannot be tracked and further analyzed. 

2) Detected moving objects are tracked across the video frames to generate trajectories that enable the characterization of the motion behaviors of the moving objects.

3) Tracked moving objects are classified into one of a set of pre-defined objects. This stage is vital since the interpretation of the motion behaviors and assessment of potential risk are usually based on the type and identity of the moving objects.

4) The motion behaviors of the classified objects are analyzed. When abnormal behaviors are detected, the system should raise alarms to inform the security personnel.

Some relevant works on visual surveillance are summarized in Table 4. I-IV.
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SOME OF THE VISUAL SURVEILLANCE LITERATURE ON MOVING OBJECT DETECTION

Author

Major Feature

Grimson et al. [1]

Model each pixel as a mixture of Gaussians and using an on-line approximation to update the

model.

Toyama et al. [2]

Apply a three-component system for background maintenance: the pixel-level to make probabilistic
predictions of the expected background; the region-level component fills in homogeneous regions
of foreground objects; and the frame-level component detects sudden, global changes in the image

and swaps in better approximations of the background.

Haritaoglu et al. [3]

Build a statistical model for a background scene using measures such as minimum, maximum, and

the median of the largest interframe absolute difference

Lipton et al. [4]

Use temporal differencing, thresholding and connected component analysis to detect moving objects

Collins et al. [5]

Use three-frame temporal differencing, background subtraction and connected component analysis

o detect moving objects; maintain adaptive background model and threshold for each pixel
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SOME OF THE VISUAL SURVEILLANCE LITERATURE ON TRACKING

Author Major Feature

Isard et al. [6] Track curves in dense visual clutter by factored sampling. Use learned dynamical models, together

with visual observations, to propagate the random set over time.

Comaniciu et al. [7] Track nonrigid objects using histogram-based target representations, regularized by spatial masking
with an isotropic kernel. Target localization problem is formulated as gradient-based optimization,

and implemented by the mean shift procedure.

McKenna et al. [8] Tracking is performed at three levels of abstraction: regions, people, and groups. A novel, adaptive
background subtraction method that combines color and gradient information is used to cope with

shadows and unreliable color cues.

Juetal. [9] Deal with the articulated motion of human limbs by defining a card-board person model. in which
a person’s limbs are represented by a set of connected planar patches. The parameterized image
motion of these patches is constrained to enforce articulated motion and is solved for directly using
a robust estimation technique. The recovered motion parameters can be used to perform view-based

tecognition of human activities from the optical flow parameters
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SOME OF THE VISUAL SURVEILLANCE LITERATURE ON OBJECT CLASSIFICATION

Author Major Feature

Collins et al. [5] Classify moving object blobs into three classes: human, vehicle, and human group, using viewpoint-
specific neural networks, trained for each camera. Input features to the network include image blob
dispersedness, area, apparent aspect ratio and camera zoom. Apply linear discriminant analysis and

k-nearest-neighbor to classify vehicle types and people using shape and color features.

Lipton et al. [4] Classify moving object blobs into three classes: human, vehicle and background clutter, using

image blob dispersedness and area as the metrics.

Cutler et al. [10] Apply time-frequency analysis to detect and characterize the periodic motion of tracked objects.
Classify objects using periodicity. Examples of object classification include (people, running dogs,

vehicles), person counting, and nonstationary periodicity.

Stauffer [11] Use accumulated joint cooccurrences of the representations within the sequence to create a

hierarchical binary-tree classifier, which is useful to classify sequences as well as individual

instances.
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SOME OF THE VISUAL SURVEILLANCE LITERATURE ON OBJECT BEHAVIOR ANALYSIS

Author

Major Feature

Bobick et al. [12]

Represent and recognize human movement using a temporal template-a static vector-image Where
the vector value at each point is a function of the motion properties at the corresponding spatial

location in an image sequence.

Oliver et al. [13]

Detect interactions between people and classify the type of interaction. Combine top-down with
bottom-up information in a closed feedback loop, with both components employing a statistical
Bayesian approach. Propose and compare two different state-based learning architectures, namely,
HMMs and CHMMs for modeling behaviors and interactions

Brand et al. [14]

Show that by minimizing the entropy of the joint distribution, an HMM's internal state machine can
be made to organize observed activity into meaningful states. This has uses in video monitoring and

annotation, low bit-rate coding of scene activity, and detection of anomalous behavior. Demonstrate

how the framework learns principal modes of activity and patterns of activity change

Tvanov [15]

Propose a probabilistic syntactic approach to the detection and recognition of temporally extended
activities and interactions between multiple agents. Probabilistic event detectors propose candidate
detections of low-level features, which are provided to a stochastic context-free grammar parser.
The parser provides longer range temporal constraints, disambiguates uncertain low-level detections,
and allows the inclusion of a priori knowledge about the structure of temporal events in a given

domain.

Remagnino [16]

Present an agent based surveillance system for use in monitoring scenes involving both pedestrians

and vehicles. Supplies textual descriptions for the dynamic activity occurring in the 3D world,
which are derived by means of dynamic and probabilistic inference based on geometric information

provided by a vision system that tracks vehicles and pedesrians.
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4.3 Video Analysis for Object Detection and Extraction
Automatic detection of semantic visual objects within a digital image or video stream still represents one of the great challenges in computer vision. Although the problem of object detection within a video sequence (foreground object de​tection) is often treated separately from the image segmentation problem (color​-texture segmentation), the two problems exhibit a strong conceptual similarity. Here, we present a framework that combines a foreground object de​tection approach and an image color segmentation technique in order to achieve better detection of semantic objects within a video sequence. 

Common solutions to foreground object detection from a digital video are based on some form of background subtraction or background suppression [36, 37]. These approaches work well when the camera is in a fixed position, and when there is no background movement (e.g., footage taken by a stationary camera filming a highway toll plaza on a bright, sunny day). However, if the camera moves, or if the scene contains a complex moving background, the object detec​tion and tracking becomes more difficult. For example, background may consist of a water surfaces with constant waves and illumination changes, wavering tree branches, extreme weather conditions that involve precipitation, which all may obstruct the detection of the actual object of interest on the scene. In many real​ world applications, such as marine surveillance, a scene can potentially contain both types of background: moving and stationary. 

Object detection plays a crucial role in most surveillance applications. With​out a good object detection method in place, the subsequent actions such as object classification and tracking would be infeasible. Our main goal was to ob​tain a robust marine surveillance object detection method that can successfully overcome obstacles inferred by the presence of the complex, moving background. In our view, such algorithm should have the following properties in order to be of practical use: 

· Determine potentially threatening objects within a scene containing a com​plex, moving background. Marine surveillance scene is likely to contain a moving background such as ﬂickering water surfaces, moving clouds, waver​ing trees, and similar. Thus, it is essential that the algorithm can deal with such background and still detect the potential objects of interest. 

· Produce no false negatives and a minimal number of false positives. A surveil​lance application in general prefers no false negatives so that no potential threat is ever overlooked. On the other hand, having too many false positives would make potential post-processing activities, such as object classification, highly impractical. 

· Be fast and highly efficient, operating at a reasonable frame rate. The object that poses a potential threat must be detected fast so that the appropriate preventive action can be taken in a timely manner. Furthermore, if the algo​rithm operates at an extremely small frame rate due to its inefficiency, some potential objects of interest could be overlooked. 

· Use a minimal number of scene-related assumptions. When designing an ob​ject detection method targeted for marine surveillance applications, making the algorithm dependent upon too many assumptions regarding a scene set​ting (such as the location, presence, or absence of the scene objects like sky, sea, land, islands, peninsulas, forests, or buildings) would likely make the algorithm fail as soon as some of the assumptions do not hold. 

To our knowledge, the existing literature does not offer an approach that exhibits all of the aforementioned properties. In this paper, we establish a hy​brid method that essentially has such properties. We have modified and extended two previously proposed general-purpose approaches, one for color-texture image segmentation and one for a foreground video object detection, and merged them into a hybrid method that is suiTable 4. for practical marine surveillance applications. 

4.3.1 Related Work 

Some of the early methods for dealing with the instances of non-stationary back​ground were based on smoothing the color of a background pixel over time us​ing different filtering techniques such as Kalman filters [9, 11]. However, these methods are not particularly effective for sequences with high-frequency background changes. Slightly better results were reported for techniques that rely on the recursive Gaussian function to describe the value distribution of pixels from sTable 4. background objects [31]. 

More recently, this model was significantly improved by employing a Mixture of Gaussians (MoG), where the values of the pixels from background objects are described by multi​ple Gaussian distributions [32, 44, 47]. This model was considered promising since it showed good foreground object segmentation results for many outdoor se​quences. However, weaker results were reported [40] for video sequences contain​ing non-periodical background changes, which is the case for most of the marine sequences. In marine video sequences, such background changes occur frequently due to the waves and water surface illumination, cloud shadows, and similar. 

Voles et al. proposed a method suiTable 4. for object detection in maritime scenes based on an isotropic diffusion [46]. Unlike Gaussian filtering, anisotropic diffusion preserves well-defined edges and large homogeneous regions over poorly defined edges and small inhomogeneous regions. This approach performs well for horizontal and vertical edges, but it fails for other directions. In addition, unless simplified at the expense of performance, anisotropic diffusion is iterative and time consuming. 

In 2003, Li et al. proposed a method for foreground object detection employ​ing a Bayes decision framework [40]. The method has shown promising exper​imental object segmentation results even for the sequences containing complex variations and non-periodical movements in the background. In addition to the generic nature of the algorithm where no a priori assumptions about the scene are necessary, the authors claim that their algorithm can handle a throughput of about 15 fps for CIF video resolution, which is a reasonable frame rate for our purposes. In addition, the algorithm is parallelizable at the pixel level, so that even better frame rates could be achieved if parallelization can be afforded. How​ever, when we applied the algorithm to marine sequences, the object boundaries were not particularly accurate, and the segmented frames contained too many noise-related and scattered pixels. Furthermore, the adaptive threshold mecha​nism from [42] that was originally used by Li et al. performed poorly when fast large objects suddenly entered a scene. As a consequence, the algorithm produced instant ﬂashing frames where most of the pixels were mistakenly classified as a foreground. 

For removing these scattered noise pixels, Li et al. suggested applying mor​phological open and close operations [40]. Unfortunately, in doing so, small ob​jects of interest could be lost or the boundaries of larger objects could be de​graded and chopped, which could potentially change the outcome of the threat classification post-process. The details of the algorithm by Li et al., without mor​phological transformations and with a different adaptive threshold mechanism are presented in the next section. 

[image: image6.wmf]
Figure 4.2. Block diagram of the proposed foreground segmentation system.

In general, the idea of combining the motion-related and texture-related in​formation to improve the segmentation output is not new. In [43], Ross presented a method in which duality of color segmentation and optical ﬂow motion in​formation was exploited. As a result, a better image segmentation is reported for a variety of natural images (frames) [43]. Ross also presented a compara​tive study of some of the relevant color-texture segmentation methods suiTable 4. for algorithmic synergy with the motion-related information. Among the can​didates, the Felzenszwalb-Huttenlocher (F-H) [33] image segmentation algorithm was outstanding for its speed, its clear theoretical formulation, and its perfor​mance on natural images. The overview of F-H approach is presented in the following section. 

4.3.2 Description of the Proposed Algorithm 

The proposed hybrid background segmentation method has two distinct phases:

I. primary foreground segmentation based on background modeling; and 

II. postprocessing based on color segmentation. 

A block diagram of the system is shown in Fig. 2. 

Primary foreground segmentation is based on a partial probabilistic model of the background in conjunction with a more classical low-pass filtered background image and a Bayesian decision framework for change classification proposed in [40]. The approach relies on the assumption that for a scene obtained from a static camera, there exist features, which can be used to discern whether a certain pixel belongs to a background or a foreground object and on the idea that the background can be modeled by probabilities of a certain feature value occurring at a specific pixel. Further more the background is viewed as consisting of objects that may be moving to an extent but are stationary in general, making it possible to model it by a small number of feature values that occur at a specific pixel with significant probability. This assumption is ground for computational feasibility of the proposed approach.

Let vt be a discrete value feature vector extracted from an image sequence at the pixel s = (x, y) and time instant t. Using Bayes rule, it follows that the a posterior probability of vt from the background b or foreground f is 

P(C|vt, s) = (P(vt|C, s)P(C|s))/P(vt|s), 
(1)

where C= b or f. 

Using the Bayes decision rule, the pixel is classified as background if the feature vector satisfies 

P(b|vt, s) > P(f|vt, s) 

(2)

Noting that the feature vectors associated the pixel s are either from background or from foreground objects, it follows

P(vt|s) = P(vt|b, s) · P(b|s) + P(vt|f, s) · P(f|s). (3)

Substituting (1) and (3) to (2), it becomes

2P(vt|b, s) · P(b|s) > P(vt|s) 
(4)

This indicates that by learning the a prior probability P(b|s), the probability P(vt|s) and the conditional probability P(vt|b, s) in advance, we may classify a feature vt as either associated with foreground or with background.

The mathematical form of P(vt|s) and P(vt|b, s) in (4) is unknown in general cases. They could be represented by the histograms of feature vectors over the entire feature space. However operating on the joint histogram would be expensive both in terms of computation and storage. A good approximation is therefore desirable. Since the background is considered as containing objects, which stay constantly in the same place, the authors of the method make the assumption that the feature vectors describing the background would concentrate in a very small subspace of the feature histogram, while the feature vectors from foreground objects would be widely distributed in the feature space. This means, that with a good feature selection, it becomes possible to cover a large percentage (e.g., more than 90%) of the feature vectors keeping track of only a small number of bins in the histogram.

The used Bayesian classifier is general in terms of allowing for the use of different features to describe the stationary and movement characteristics of the background. The specific features employed in this project are the color descriptors (RGB values) for the stationary background model and the color co-​occurrence descriptors (RGB values the pixel takes in two consecutive frames) to describe the background movement. 

The foreground segmentation algorithm (Fig. 2) has four main steps: change detection, change classification, foreground segmentation and background model learning and image maintenance; indicated by solid line rectangles in Fig. 2. The last step is addressed by two modules is concerned with two distinct parts of the background model, as indicated by dotted line boxes in Fig. 2. Initial stage of the algorithm is concerned with detecting the differences be​tween the current frame and the background reference image kept (to detect the “stationary” differences) as well as the differences between two consecutive frames of the video sequence (to detect the movement). Once the differences are identified, they are used to determine whether the change is something con​sistent with the background or something that should be deemed foreground, based on the learned probabilistic model of the background. This is followed by a post-processing step used to enhance the effects of foreground segmenta​tion by combining them with the results of color-based segmentation. The final step of the algorithm is the one in which background statistics are learned and the background image updated. In it, the information of how the pixels have been classified is used to gradually change the probabilities of significant feature values encountered to be able to accurately classify changes in the future. In ad​dition to the probability learning process, knowledge of the background is stored by maintaining a reference background image updated through Infinite Impulse Response (IIR) filtering.
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Figure 4.3. Movement related change detection.


[image: image8.wmf] 

[R2 G2 B2]

 

Reference

Background

Frame 2

-

Stationary

change



Figure 4.4. "Stationary" change detection.

The change in the sequence of frame is detected based on frame differencing.  The algorithm searches for two distinct types of changes: 

1) Those observed between the current frame and one preceding it as shown in Figure 4.3 (dubbed movement related changes), and 

2) Those between the maintained background reference image and the current frame, as shown in Figure 4.4 (dubbed “stationary” changes).

Differencing is performed for separately for each RGB channel, and are combined in the end to achieve two change maps (movement related and stationary) by a logical OR operation.

To make the change detection process robust to changes in the scene lighting and spurious small number of pixels related effects, adaptive threshold selection for the differencing is employed, based on a Poisson model for the noise. To distinguish between signal (sufficiently significant changes) and noise (spurious effects) a threshold is selected which will make the probability density function describing the differences as different from the Poisson distribution as possible. The original approach used automatic thresholding based on noise intensity estimation approach proposed in [42] for change detection while morphological open and close operations were used to enhance the foreground segmentation results. However, we found that automatic thresholding based on a Poisson distribution model for the spatial distribution of the noise [42] leads to better results in our application domain. Figure 4.5 illustrates the change detection process per channel. It is a plot of the respective differences per channel at each point of the frame and the plane cutting across the peaks represents the threshold selected.


[image: image9.wmf]
Figure 4.5. Change detection plot.

Once the changes are detected a feature for the pixel in question is formed as a vector of R, G and B value of the current frame at that position wherever a “stationary” change has been detected, and as a vector of R, G and B values from both the current frame and its predecessor at each position where a movement related change has been detected. Refer to Figures 4 and 3 respectively.

The Bayesian decision framework forms the change classification and part of the background model learning and maintenance step. The probabilistic model is used as the sole model for the movement of the background, however, it is only an extension of a more traditional IIR filter model for the stationary changes, since they are reflected both in the background reference image and the maintained probability density functions (PDFs) model. 

For each pixel in the image two structures to store the learnt PDFs for movement related changes and “stationary” changes. The probability distribution is modeled as a simple array of probabilities P(vt|b, s) for the features encountered most frequently. Assuming that the background, although dynamic, does not change significantly on the macroscopic level, it is possible to have a fairly good representation of the PDF at a pixel for a fairly short array (actual values used are 50 for “stationary” features and 30 for movement related features).  With this framework in place it becomes possible to use equation 4 to decide whether the change observed at a certain pixel is something that is a characteristic of the background or something pertinent to the foreground. Thus, Bayesian decision process is used to filter out the changes perceived by frame differencing results that are in fact due to complex, moving background.

To accommodate for slow scene dynamics both the probabilistic model and the reference background image are updated in time. The probabilities stored by the system are updated according to the following equations:
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where:

 
pbs,t – probability of the pixel belonging to the background at time t,


pvs,t,i – probability of feature i occurring at the pixel at time t,


pvbs,t,i – probability of feature i occurring at the pixel if the pixel belongs to the background, at time t,


( - learning rate.
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Parameter ( controls the dynamics of the update process and was set to 0.0047 during our experiments. Our approach uses Infinite Impulse Response (IIR) fil​ter based background image maintenance. Thus, the reference background image is updated as
Bc(s, t + 1) = (1 − α1)Bc(s, t) + α1Ic(s, t)

Where c ( {r, g, b} and α1 is a parameter of the filter. In our experiments α1 was set to 0.01. Initial value for the background reference image is the first frame of the sequence.

Parallel to the foreground segmentation algorithm described color-based single-frame color segmentation is performed. The F-H algorithm, indicated by the top box in Fig. 2, uses a simple graph theoretic model that allows for the segmentation in O(n log n) time, but still captures a reasonably general class of textures. Although the authors presented some of the extensions in [34] and [35] to their original approach [33], in our hybrid approach we employ the original version of the algorithm. 

In [33], Felzenszwalb and Hut​tenlocher proposed an image segmentation algorithm based on local variation, which they defined as the intensity difference between neighboring pixels.  Image segmentation was treated as a graph partitioning problem where for each given image, a graph G = (V, E) is defined such that each vertex from V corresponds to an image pixel, and each edge from E corresponds to a connection between two neighboring pixels. Any given edge in E carries a weight given by the intensity difference between pixels it connects. In such setting, image segmentation is equivalent to obtaining a partition of the graph G into disjoint connected components, or segments. Given a measure of variation between two disjoint components (called external variation) and a measure of the inner variation of a single component (called internal variation) it is possible to evaluate a given segmented image, or equivalently a given graph partition. More precisely, a graph partition is over-segmented with too many components if the variation between two disjoint components is small relative to the internal variation of both components. On the other hand, a partition is under-segmented (not enough components) if there is a way to split some of its components and produce a partition which is still not over-segmented. The F-H algorithm essentially generates a partition that is optimal in the sense that it is neither over-segmented nor under-segmented. 

Felzenszwalb and Hut​tenlocher defined the internal variation of a component to be maximum edge weight in any minimum spanning tree of that component, and the external vari​ation between two components to be the lowest edge weight connecting them:
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The following threshold function τ of a component controls the degree to which the external variation can be larger than the internal variations, and still have the components be considered similar.
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 denotes the size of component C, and k a threshold control parameter. In our experiments, we have se​lected the input parameter k = 100, since for that value we obtained the best segmentation results (see Figure 4.6). Finally, the F-H algorithm uses the following decision framework to determine whether the external variation of two disjoint components is small relative to the internal variation of both components 
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The segment post-processing for minimizing the number of segments by blindly merging the small segments with the larger neighboring ones, which was proposed by the authors [33], is far too dangerous to apply in marine surveillance applications since the small objects could disappear in the process (see Figure 4.6(c)). 
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Figure 4.6. F-H algorithm: (a) the original frame, (b) the F-H output (k = 100) and without the post-processing step, and (c) the F-H output after post-processing that shows the undesired effect of losing the small boat.

Thus, we have modified the post-processing mechanism to work on a more sophisticated level.  Namely, our modified post-processing was based on the segment features consisting of the first and the second order color moments [45], calculated per each RGB channel.  Intensity average is used as a first order color moment, while intensity standard deviation is used as a second order color moment. In many instances, even better re​sults were obtained when the features also included several bins counting very small vertical, horizontal, and diagonal edge differences within a segment. Figure 4.7 illustrates our process of segment merging based on the color moments and edge binning.
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Figure 4.7. Reducing the number of false positives with modified post-processing based on color moments  and edge bins: (a) F-H segmented image without modified post-processing (79 segments), and (b) with our modified post-processing (15 segments).

To optimize the performance and reduce unnecessary computation, the image is first filtered through the standard Gaussian convolution filter.  In our experiments, the convolution kernel ( = 0.5 was used. The following is the modified version of F-H algorithm used in our hybrid approach (top block of Figure 4.2):

1. Apply Gaussian convolution to input image

2. Sort the edges E by non-decreasing weights into e1, …, ek
3. Start with one pixel as one component

4. Repeat step 5 for eq = e1, …, ek 

5. If the weight of eq is small relative to the internal variation of the two components it connects then merge components; otherwise do nothing

6. Perform modified post-processing

The final step of our algorithm is the enhancement of foreground segmentation results, using the result of the F-H segmentation. To this end we assume that the results of F-H algorithm are fine grained and accurate enough to be treated as accurate to the extent of the precision we desire for our algorithm. Thus, we perform simple filtering of the results of foreground segmentation by declaring all the segments obtained from the F-H algorithm with more than half of their pixels marked as foreground, foreground segments, while others are declared background segments.

4.2.3 Results 

To test the approach a number of sequences extracted from a marine surveillance video has been used. The data used is real and pertinent to our problem domain. Frames include water-surface, sky, parts of solid ground and were captured by a (to a great extent) stationary camera. The camera was moved only slightly from time to time by wind. Figure 4.8 provides a glimpse of the results of the algorithm via a set of representative frames pertinent to a single input sequence frame segmentation process. 

[image: image57.png]Acquisition —F‘ Detection H Grouping H Tracking ‘
Sensor control* Model update HClassiﬁcation* H Filtering ‘




[image: image58.png]


        





  

                               (a)                                                                      (b)

[image: image59.png]


[image: image60.png]



(c)
                                                          (d)

Figure 4.8. Representative frame: (a) original frame,  (b) reference background frame, (c) F-H segmentation, (d) final segmentation result.

4.4 Object Classification 

As illustrated in Figure 4.9, the object classification algorithm can be trained off-line and then integrated into a surveillance system for classifying tracked moving objects. 

We are currently working on building a visual surveillance system to monitor coastline scenes. In such a context, the moving objects of interest are mainly ships. Therefore, we focus on the classification of ships into a number of types, which are defined by human observers.
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Figure 4.9. Object Classification in a Visual Surveillance System

4.4.1.1 Literature Survey on Object Classification

In previous work, Collins et al. [5] classified moving object blobs into three classes: human, vehicle, and human group, using viewpoint-specific neural networks, trained for each camera. Input features to the network include image blob dispersedness, area, apparent aspect ratio and camera zoom. They also applied linear discriminant analysis and k-Nearest-Neighbor to classify vehicle types and people using shape and color features. Lipton et al. [4] classified moving object blobs into three classes: human, vehicle and background clutter, using image blob dispersedness and area as the metrics.

Almost all existing work on classification of ships based on real data use Forward Looking InfraRed (FLIR) images, since such images are insensitive to lighting conditions and allow easy segmentation of ships, water and sky pixels based on intensity histograms. In related work, Alves et al. [17] proposed to use edge-histogram, scale-invariant moments, and neural networks to classify FLIR images of ships into five types based on silhouettes, and achieved classification accuracy from 70% to 80%. Withagen et al. [8] applied k-Nearest-Neighbor algorithm, linear, and quadratic classifiers to classify ships into six types. The features include both moment invariant functions and special features such as location of the hot spot (funnel) and location of the superstructures (ship structures above the main deck). They achieved classification accuracy of about 90%.

4.4.1.2 Proposed Approach

We formulate the task of ship classification in the standard framework of pattern recognition:

1) 402 instances of ship regions were collected from surveillance video, and were classified into 6 types by human observers. Here we define ``ship region" as a binary image highlighting the region corresponding to the ship.

2) The shape feature of each region was extracted using MPEG-7 region-based shape descriptor.

3) The classification algorithm was applied to classify ships based on the similarity of their shape features.

4) The classification performance was evaluated using cross validation and the optimal parameters were determined.

Figure 4.10 illustrates the components and work flow of object classification, from off-line classifier training to on-line operation.
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Figure 4.10 Components and work flow of object classification

We use MPEG-7 region-based shape descriptor to extract shape features because its effectiveness has been extensively evaluated before being adopted into the MPEG-7 standard. Its major advantages include robustness to noise, tolerance to objects with holes, tolerance to objects fragmented into several components, etc. This is in contrast to the ad hoc and domain-specific shape features used in previous work on ship classification. In addition, the feature extraction process can be readily applied to the classification of other types of objects, such as vehicles, airplanes, etc.

We apply two commonly used classification algorithms (k-Nearest-Neighbor algorithm and artificial neural network) and compare their performance based on the mean accuracy of ten stratified ten-fold cross validation, which is usually considered a standard measure for predicting classification performance, according to Witten and Frank [9]. The accuracy value for k-Nearest-Neighbor algorithm classification based on stratified ten-fold cross validation is about 91%, which compares favorably with existing work. k-Nearest-Neighbor algorithm outperforms artificial neural network, and takes much less computation time. The data used in this study is obtained from video in the visible spectrum, but the methodology is also applicable to other types of data. This is because the input to the feature exaction procedure is a binary image highlighting the region corresponding to the object, which is independent of the nature of the data source.

The rest of the paper is organized as follows. We describe the process of detecting ship regions in Section 2. Section 3 discusses how shape information is extracted from each ship region by applying the MPEG-7 region-based shape descriptor. In Section 4, we present the two classification algorithms: k-Nearest-Neighbor algorithm and artificial neural network. The three types of cross validation are defined in Section 5. The experimental results and analysis are reported in Section 6. We conclude the paper in Section 7.

4.4.2 Detection of Ships

The surveillance videos are provided by the Nova Southeastern University Oceanographic Center Waterway Expert Traffic System Project. The videos were taken on the side of an urban canal in Fort Lauderdale in 1998. The video format is MPEG-1 NTSC with a resolution of 352×240 and 24-bit color depth.

To detect ships from video frames, we applied the background subtraction and double thresholding with hysteresis approach proposed by Boult et al. [20]. The effectiveness of this approach is demonstrated in Figure 4.11, where (a) is the background, and (b) is the video frame containing the ship. Figure 4.11(c) is obtained by subtracting (a) from (b), which shows that the motion comes from not only the ship, but also the water, the trees and the clouds. For our purpose, however, water, trees and clouds belong to the background clutter. The straightforward method to isolate the object of interest (ship) from the background clutter is to threshold the difference. The underlying assumption is that the most prominent motion is caused by the object, and pixels belonging to the object should therefore have larger difference values than those belonging to the background clutter. Figure 4.11(d) and 11(e) show the results of thresholding using a relatively low threshold and a relatively high threshold, respectively. When the threshold is low, both the ship region and a significant amount of clutter are detected. In contrast, when the threshold is high, only a small subset of the ship region is detected. This reveals that when the range of pixel differences in the object region overlaps with those in the background region, a single threshold is unable to produce satisfactory results.

To overcome this problem, we define two thresholds and perform two thresholding operations. The idea is to exploit the spatial coherence of the object region in the difference image.

1) We apply a high threshold to extract a subset of the object region. This operation usually rules out the majority of pixels in the background, as long as our previously mentioned assumption holds.

2) We perform a recursive connected-component labeling procedure from the subset of the object region obtained in the first stage, so that nearby pixels with difference values passing the low threshold are identified. 

In this way, the object of interest can be extracted close to its entirety. As shown in Figure 4.11(f), the ship is successfully detected. In our approach, the high threshold is determined as the 99-percentile cutoff value in the gray-level histogram of the difference image, and the low threshold is empirically determined. 
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Figure 4.11 Detecting ships by background subtraction and double thresholding with hysteresis

The major advantage of this approach is that it requires little computational cost; hence it is suiTable 4. for real time and high definition video processing.

Since the focus of this study is the classification of ships, and other members of the team are implementing the modules that will generate the ship regions for us, we have extracted the ship regions in a semi-automatic way. First we get the double thresholding with hysteresis result such as Figure 4.11(f), which is a binary image separating the ship from its background. Then we manually define a bounding box around the ship area to generate a rectangular region containing the ship.  We extracted 402 instances of ship regions from the video, and they were classified by human observers into 6 types. Figures 12-17 illustrate examples of ships in each type. Note that ships of the same type may not always have exactly the same shape, but the variations of shape within each type are usually significantly smaller than the variations between different types.

We have also applied other approaches for object detection, but have not found any that can provide better performance. For example, the well-known Mixture of Gaussian (MOG) approach proposed by Grimson et al. [1] generated fragmented foreground pixels similar to Figure 4.11(d), which has also been noted by Magee [21] in vehicle tracking. The MOG approach works reasonably well in many other scenes, but in our video there are at least three challenging issues: The water area has very similar color as the body of ships; the body of ships contain large areas of uniform color; and the water area also shows significant motion from frame to frame. All these factors make it difficult to generate accurate and complete object silhouettes.
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Figure 4.12 Examples of Express Cruise
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Figure 4.13 Examples of Motor Yacht
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Figure 4.14 Examples of Recreational
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Figure 4.15 Examples of Speed Boat
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Figure 4.16 Examples of Sportfish
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Figure 4.17 Examples of Water Taxi

4.3.3 Feature Extraction

 In visual information processing, objects are often characterized by their color, texture, and shape features. For ships, shape is the most reliable feature for classification purpose, since color and texture of a ship can be easily altered, and ships with the same shape but different color or texture are usually considered as belonging to the same type.

We apply the MPEG-7 region-based shape descriptor [22] to extract the shape information of each ship region. This descriptor belongs to moment-based shape analysis techniques [23], and it summarizes the distribution of pixels constituting an object, both inside and on the contour. It can deal with the case when an object is split into several disjoint regions and the case when an object contains holes. It is also insensitive to segmentation noise. These properties are desirable since the detection process may not always be able to generate accurate and complete object silhouettes. For the same reason, contour based shape descriptors are not appropriate for our study.

The shape descriptor applies a complex angular radial (ART) transform to a shape represented by a binary image, and computes a feature vector [24]. The feature vector is parameterized by the number of angular directions m and the number of radial scales n, as defined below:
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 is the ART basis function of order n and m, which is separable along the angular and radial directions. It is defined by:
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The similarity between two shapes A and B is measured by the L1 distance (city block distance) or L2 distance (Euclidean distance) between their feature vectors.
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4.4.4 Classification Algorithm

In this study, we apply two commonly used classification algorithm: k-Nearest-Neighbor algorithm and artificial neural network.

4.4.4.1 k-Nearest-Neighbor Algorithm

The k-Nearest-Neighbor algorithm (k-NN) belongs to a general methodology: case-based reasoning (CBR). The basic idea of CBR is to solve a new problem by retrieving similar problems from a case library and reusing the solutions suggested by similar problems. In our previous work Khoshgoftaar et al. [25][28], we have applied CBR to classify software modules into fault-prone and non-fault-prone categories. In the context of ship classification, the primary advantage of CBR is its scalability with respect to the size of the case library. When new labeled cases are added to the case library, it is not necessary to re-build the classifier, which is often computationally expensive for other classification algorithms. In addition, CBR can provide a meaningful interpretation of the classification result by showing the similar cases retrieved from the library.

In the standard version of k-Nearest-Neighbor algorithm, a new case x is assigned to the class that receives the maximum number of votes among the k cases most similar to it, as described by the following formula:
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where CL stands for the case library; kNN(x, CL) refers to the class assigned to x by the algorithm; N(x, k, CL) denotes the set of k most similar cases retrieved from the case library CL; Class(y) represents the class of y in the case library; δ(i, j) is defined by:

[image: image40.png](8)




Typically, cases are represented by feature vectors in a feature space, and the similarity between two cases x and y is measured by the distance between their feature vectors d(x, y). In the case of ship classification, the similarity between ships is defined by the L1 or L2 distance between shape feature vectors, as defined in the previous section. When more than one class happens to receive the same amount of maximum votes, we break the tie by choosing the class with the smallest average distance to the new case.

An updated version of k-Nearest-Neighbor algorithm weighs the vote of each similar case by its similarity to the new case, as described by the following formula:
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where d(x, y) is the distance between case x and case y.

4.4.4.2 Artificial Neural Network

Artificial neural network (ANN) is designed to model the information processing by inter-connected neurons in a biological neural network. A common form of artificial neural network is the multi-layer feed-forward network, where the network consists of an input layer, an output layer, and one or more hidden layers. Each neuron is connected to neurons in adjacent layers. The input to each neuron in the input layer comes directly from input data, while the input to each neuron in other layers is defined as a weighted average of the output from each neuron in the previous layer, weighted by the connection weights. The output from a neuron is typically a sigmoidal function of its input, in order to model non-linear relationships. The set of output values from each neuron in the output layer constitute the output of the entire network.

The set of connection weights between every two connected neurons are the parameters that can be adjusted during the training process. The back-propagation algorithm updates the weights in an iterative fashion until convergence, in order to minimize the error between the desired output and the actual output of the network. Once trained, the weights are fixed and the network can be applied to the test data set.

Besides biological plausibility, the major advantages of an artificial neural network include: it is robust to noise in the data; it is capable of approximating arbitrary functions. The drawbacks are that there is no guarantee for convergence during training and the interpretation of the connection weights is not intuitive. In our previous work Khoshgoftaar et al. [26][29][30], we have applied artificial neural network to classify software modules into low risk and high risk categories.

4.4.5 Performance Evaluation by Cross Validation

To evaluate the classification performance, we apply three types of cross validation: leave-one-out, ten-fold and stratified ten-fold. We provide a general definition of n-fold cross validation based on Kohavi [57]. The complete data set D is randomly partitioned into n subsets of approximately equal size, i.e.,
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For each subset, a classifier is built by applying the classification algorithm to the remaining n-1 subsets as training data set, and that subset is used as test data set for evaluating the performance of the classifier. The overall classification performance for the entire data set is defined as:
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The accuracy is a random variable dependent upon the random partitioning. For n-fold cross validation, there are [image: image44.png]


 possible ways of partitioning a data set of size |D|. In the special case of leave-one-out case (n=1), there are only |D| number of partitioning. But this number quickly becomes enormous with larger values of n. For example, our ship data set contains 402 instances, and the number of possible ten-fold partitions is 2.43e+055. Since it is impossible to enumerate all possible partitioning, it is a standard procedure to repeat the cross validation process ten times and compute the mean accuracy [29].

n fold stratified cross validation is different from normal n fold cross validation in that the members of each class are approximately evenly divided into the subsets, so that for each class the training data set always includes about (n-1)/n of all members in that class. As a result, the classifier built on the training data set captures the majority of information for each class. It is expected that the classification performance based on n fold stratified cross validation should be better on average than that based on normal n fold cross validation.

4.4.6 Experimental Results

4.4.6.1 k-Nearest-Neighbor Algorithm

We perform combinatorial experiments to examine the effect of the following factors on classification performance: version of k-Nearest-Neighbor algorithm (standard voting or distance-weighted voting), type of distance measure (L1or L2), and type of cross validation (leave-one-out or ten-fold or stratified ten-fold). Therefore, there are 12 experiments. Within each experiment, we vary three parameters: the number of angular directions m, the number of radial scales n, and the number of nearest neighbors k. The classification performance in terms of accuracy defined in Equation (11) is reported in Table 4.s V-XVI. For ten-fold cross validation, each entry is an average of ten accuracy values obtained from different random partitioning. Table 4. XVII summarizes the maximum accuracy value in each experiment. Figure 4.18 demonstrates the classification results. In each subfigure, the leftmost image shows the ship to be classified, while the other three images are the three nearest neighbors in terms of the shape feature. All four images in each subfigure 4.have the same ground truth type, as indicated by the caption. Note that the ships in each subfigure 4.often vary in size and orientation, and also vary slightly in shape.
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Figure 4.18 Demonstration of k Nearest Neighbor classification algorithm.

In each subfigure, the leftmost image shows the ship to be classified, while the other three nearest neighbors in terms of the shape feature. All for images in each subfigure 4.have the same ground type, as indicated by the caption. Note that the ships in each subfigure 4.often vary in size and orientation, and also vary in shape.
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L1 DISTANCE, STANDARD VOTING, LEAVE ONE OUT

Neighborhood Size (k)

Angular (m) | Radial (n) 1 2 3 P 5 3 7 3 9 0
12 3 0.8582 | 0.8582 | 0.8383 0.8483 | 0.8557 | 0.8632 | 0.8507 | 0.8458 | 0.8458 | 0.8433
12 6 0.8781 | 0.8781 0.8881 | 0.8881 | 0.8806 | 0.8756 | 0.8706 | 0.8706 | 0.8682 | 0.8632
24 3 0.8682 | 0.8682 | 0.9030 | 0.8905 | 0.8881 | 0.8856 | 0.8706 | 0.8682 | 0.8706 | 0.8731
24 6 0.9005 | 0.9005 | 0.8980 0.9055 | 0.8955 | 0.9030 | 0.8781 | 0.8856 | 0.8706 | 0.8731
48 6 0.8682 | 0.8682 | 0.8682 | 0.8706 | 0.8881 0.8905 | 0.8756 | 0.8781 | 0.8682 | 0.8756
24 12 0.9055 | 0.9055 | 0.9104 | 0.9104 | 0.8955 | 0.9030 | 0.8881 | 0.8905 | 0.8806 | 0.8831
48 12 0.8930 | 0.8930 | 0.8881 0.8955 | 0.8955 | 0.8856 | 0.8682 | 0.8756 | 0.8632 | 0.8582

TABLE VI
L1 DISTANCE, STANDARD VOTING, 10 FOLD
Neighborhood Size (k)

Angular (m) | Radial (n) 1 2 3 2 5 6 7 3 9 0
12 3 0.8542 | 0.8542 | 0.8403 | 0.8507 | 0.8550 | 0.8567 | 0.8445 | 0.8468 | 0.8396 | 0.8410
12 6 0.8540 | 0.8540 | 0.8410 | 0.8490 | 0.8490 0.8483 | 0.8453 | 0.8418 | 0.8433
24 3 0.8527 | 0.8527 | 0.8391 | 0.8473 | 0.8478 0.8438 | 0.8465 | 0.8425 | 0.8405
24 6 0.8500 | 0.8500 | 0.8368 | 0.8473 | 0.8505 0.855 0.8410 | 0.8443 | 0.8388 | 0.8386
48 6 0.8542 | 0.8542 | 0.8410 | 0.8498 | 0.8550 | 0.8597 | 0.8483 | 0.8488 | 0.8425 | 0.8423
24 12 0.8505 | 0.8505 | 0.8361 | 0.8468 | 0.8460 | 0.8485 | 0.8445 | 0.8410 | 0.8386 | 0.8373
48 12 0.8542 | 0.8542 | 0.8403 | 0.8498 | 0.8483 | 0.8532 | 0.8388 | 0.8465 | 0.8405 | 0.8418
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TABLE VII

Angular (m)

Radial (n)

Neighborhood Size (k)

1 2 3 4 5 6 7 8 9 10
12 3 0.8602 | 0.8602 | 0.8430 | 0.8522 | 0.8510 | 0.8577 | 0.8463 | 0.8463 | 0.8420 | 0.8413
12 6 0.8774 | 0.8774 | 0.8866 0.8881 | 0.8761 | 0.8741 | 0.8662 | 0.8689 | 0.8622 | 0.8662
24 3 0.8704 | 0.8704 | 0.895 0.8873 | 0.8831 | 0.8813 | 0.8716 | 0.8711 | 0.8654 | 0.8672
24 6 0.8978 | 0.8978 | 0.8973 0.9020 | 0.8878 | 0.8973 | 0.8741 | 0.8821 | 0.8629 | 0.8719
48 6 0.8634 | 0.8634 | 0.8677 0.8731 | 0.8801 0.8843 | 0.8739 | 0.8734 | 0.8662 | 0.8711
24 12 0.8995 | 0.8995 | 0.9072 | 0.9057 | 0.8898 | 0.9005 | 0.8828 | 0.8863 | 0.8719 | 0.8771
48 12 0.8843 | 0.8843 | 0.8878 0.8960 | 0.8808 | 0.8803 | 0.8597 | 0.8672 | 0.8545 | 0.8542
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L1 DISTANCE, DISTANCE WEIGHTED VOTING, LEAVE ONE OUT

Neighborhood Size (k)

Angular (m) | Radial (n) 1 2 3 P 5 3 7 3 9 0
12 3 0.8582 | 0.8582 | 0.8383 0.8483 | 0.8557 | 0.8632 | 0.8507 | 0.8458 | 0.8458 | 0.8433
12 6 0.8781 | 0.8781 0.8881 | 0.8881 | 0.8806 | 0.8756 | 0.8706 | 0.8706 | 0.8682 | 0.8632
24 3 0.8682 | 0.8682 | 0.9030 | 0.8905 | 0.8881 | 0.8856 | 0.8706 | 0.8682 | 0.8706 | 0.8731
24 6 0.9005 | 0.9005 | 0.8980 0.9055 | 0.8955 | 0.9030 | 0.8781 | 0.8856 | 0.8706 | 0.8731
48 6 0.8682 | 0.8682 | 0.8682 | 0.8706 | 0.8881 0.8905 | 0.8756 | 0.8781 | 0.8682 | 0.8756
24 12 0.9055 | 0.9055 | 0.9104 | 0.9104 | 0.8955 | 0.9030 | 0.8881 | 0.8905 | 0.8806 | 0.8831
48 12 0.8930 | 0.8930 | 0.8881 0.8955 | 0.8955 | 0.8856 | 0.8682 | 0.8756 | 0.8632 | 0.8582
TABLE IX
L1 DISTANCE, DISTANCE WEIGHTED VOTING, 10 FOLD
Neighborhood Size (k)
Angular (m) | Radial (n) 1 2 3 P 5 3 7 3 9 0
12 3 0.8542 | 0.8542 | 0.8403 0.8507 | 0.8550 | 0.8567 | 0.8445 | 0.8470 | 0.8398 | 0.8410
12 6 0.8756 | 0.8756 | 0.8813 0.8831 | 0.8766 | 0.8789 | 0.8672 | 0.8724 | 0.8622 | 0.8609
24 3 0.8652 | 0.8652 | 0.8923 | 0.8878 | 0.8833 | 0.8799 | 0.8672 | 0.8672 | 0.8619 | 0.8639
24 6 0.8965 | 0.8965 | 0.8965 0.9010 | 0.8868 | 0.8968 | 0.8739 | 0.8813 | 0.8637 | 0.8684
48 6 0.8622 | 0.8622 | 0.8672 | 0.8701 | 0.8781 0.8806 | 0.8736 | 0.8711 | 0.8587 | 0.8642
24 12 0.8988 | 0.8988 | 0.9062 | 0.9050 | 0.8898 | 0.8945 | 0.8821 | 0.8821 | 0.8746 | 0.8786
48 12 0.8821 | 0.8821 | 0.8841 0.8888 | 0.8813 | 0.8761 | 0.8617 | 0.8659 | 0.8478 | 0.8515
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L1 DISTANCE, DISTANCE WEIGHTED VOTING, 10 FOLD STRATIFIED

Neighborhood Size (k)
Angular (m) | Radial (n) 1 2 3 2 5 3 7 3 9 10
12 3 0.8602 | 0.8602 | 0.8430 | 0.8522 | 0.8510 | 0.8577 | 0.8465 | 0.8463 | 0.8428 | 0.8413
12 6 0.8774 | 0.8774 | 0.8866 0.8881 | 0.8761 | 0.8741 | 0.8662 | 0.8689 | 0.8627 | 0.8662
24 3 0.8704 | 0.8704 | 0.8955 | 0.8873 | 0.8831 | 0.8813 | 0.8716 | 0.8711 | 0.8654 | 0.8674
24 6 0.8978 | 0.8978 | 0.8973 0.9020 | 0.8878 | 0.8973 | 0.8741 | 0.8821 | 0.8629 | 0.8719
48 6 0.8634 | 0.8634 | 0.8677 0.8731 | 0.8801 0.8843 | 0.8739 | 0.8734 | 0.8662 | 0.8711
24 12 0.8995 | 0.8995 | 0.9072 | 0.9057 | 0.8898 | 0.9005 | 0.8828 | 0.8863 | 0.8719 | 0.8771
48 12 0.8843 | 0.8843 | 0.8878 0.8960 | 0.8808 | 0.8803 | 0.8597 | 0.8672 | 0.8545 | 0.8542





[image: image50.png]TABLE X1

L2 DISTANCE, STANDARD VOTING, LEAVE ONE OUT

Angular (m)

Radial (n)

Neighborhood Size (k)

1 2 3 4 5 6 7 8 9 10
12 3 0.8532 | 0.8532 | 0.8557 0.8582 | 0.8582 | 0.8582 | 0.8458 | 0.8333 | 0.8483 | 0.8557
12 6 0.8632 | 0.8632 | 0.8856 | 0.8781 0.8731 0.8781 | 0.8781 | 0.8706 | 0.8706 | 0.8632
24 3 0.8706 | 0.8706 | 0.8905 | 0.8881 0.8905 0.8881 | 0.8781 | 0.8781 | 0.8756 | 0.8682
24 6 0.8881 | 0.8881 | 0.9030 | 0.8955 0.9005 0.9¢ 0.8856 | 0.8955 | 0.8682 | 0.8731
48 6 0.8806 | 0.8806 | 0.9030 | 0.8980 | 0.8980 | 0.8980 | 0.8806 | 0.8905 | 0.8831 | 0.8831
24 12 0.8881 | 0.8881 | 0.9005 0.9080 | 0.8980 | 0.9055 | 0.8831 | 0.8955 | 0.8806 | 0|8881
48 12 0.8930 | 0.8930 | 0.8881 0.9055 0.9104 | 0.9080 | 0.8930 | 0.9055 | 0.8881 | 0.8831

TABLE XII
L2 DISTANCE, STANDARD VOTING, 10 FOLD
Neighborhood Size (k)
Angular (m) | Radial (n) 1 2 3 P 5 3 7 3 9 0

12 3 0.8493 | 0.8493 | 0.8532 0.8585 | 0.8515 | 0.8498 | 0.8420 | 0.8403 | 0.8435 | 0.8483
12 6 0.8612 | 0.8612 | 0.8803 | 0.8764 | 0.8769 | 0.8759 | 0.8736 | 0.8669 | 0.8617 | 0.8622
24 3 0.8689 | 0.8689 | 0.8873 | 0.8841 0.8826 | 0.8784 | 0.8721 | 0.8731 | 0.8674 | 0.8649
24 6 0.8876 | 0.8876 | 0.8993 | 0.8948 | 0.8960 | 0.8980 | 0.8796 | 0.8868 | 0.8649 | 0.8684
48 6 0.8789 | 0.8789 | 0.8948 | 0.8903 0.8940 | 0.8923 | 0.8813 | 0.8836 | 0.8736 | 0.8716
24 12 0.8853 | 0.8853 | 0.8965 0.9007 | 0.8908 | 0.8975 | 0.8821 | 0.8883 | 0.8756 | 0.8774
48 12 0.8871 | 0.8871 | 0.8838 | 0.8955 0.9022 | 0.8988 | 0.8883 | 0.8953 | 0.8779 | 0.8741




[image: image51.png]TABLE XTIT

L2 DISTANCE, STANDARD VOTING, 10 FOLD STRATIFIED

Neighborhood Size (k)
Angular (m) | Radial (n) 1 2 3 P 5 3 7 3 9 0
12 3 0.8542 | 0.8542 | 0.8587 0.8624 | 0.8515 | 0.8527 | 0.8423 | 0.8445 | 0.8463 | 0.8550
12 6 0.8642 | 0.8642 | 0.8831 | 0.8806 | 0.8771 | 0.8759 | 0.8736 | 0.8684 | 0.8617 | 0.8627
24 3 0.8739 | 0.8739 | 0.8861 | 0.8838 | 0.8861 | 0.8806 | 0.8766 | 0.8739 | 0.8662 | 0.8667
24 6 0.8896 | 0.8896 | 0.8993 | 0.8965 0.8940 | 0.8988 | 0.8799 | 0.8848 | 0.8647 | 0.8672
48 6 0.8821 | 0.8821 0.8978 | 0.8963 0.8920 | 0.8900 | 0.8784 | 0.8853 | 0.8749 | 0.8746
24 12 0.8866 | 0.8866 | 0.8970 0.9022 | 0.8908 | 0.8988 | 0.8816 | 0.8900 | 0.8751 | 0.8794
48 12 0.8903 | 0.8903 | 0.8893 0.9007 0.9010 | 0.9007 | 0.8873 | 0.8955 | 0.8803 0.8794‘





[image: image52.png]TABLE XIV

L2 DISTANCE, DISTANCE WEIGHTED VOTING, LEAVE ONE OUT

Neighborhood Size (k)

Angular (m) | Radial (n) 1 2 3 P 5 3 7 3 9 10
12 3 0.8532 | 0.8532 | 0.8557 0.8582 | 0.8582 | 0.8582 | 0.8458 | 0.8333 | 0.8483 | 0.8557
12 6 0.8632 | 0.8632 | 0.8856 | 0.8781 0.8731 0.8781 | 0.8781 | 0.8706 | 0.8706 | 0.8632
24 3 0.8706 | 0.8706 | 0.8905 | 0.8881 0.8905 0.8881 | 0.8781 | 0.8781 | 0.8781 | 0.8731
24 6 0.8881 | 0.8881 | 0.9030 | 0.8955 0.9005 0.9055 | 0.8856 | 0.8955 | 0.8682 | 0.8731
48 6 0.8806 | 0.8806 | 0.9030 | 0.8980 | 0.8980 | 0.8980 | 0.8806 | 0.8905 | 0.8831 | 0.8831
24 12 0.8881 | 0.8881 | 0.9005 0.9080 | 0.8980 | 0.9055 | 0.8831 | 0.8955 | 0.8806 | 0.8881
48 12 0.8930 | 0.8930 | 0.8881 0.9055 0.9104 | 0.9080 | 0.8930 | 0.9055 | 0.8881 | 0.8831
TABLE XV
L2 DISTANCE, DISTANCE WEIGHTED VOTING, 10 FOLD
Neighborhood Size (k)
Angular (m) | Radial (n) 1 2 3 P 5 3 7 3 9 0
12 3 0.8493 | 0.8493 | 0.8532 0.8585 | 0.8515 | 0.8502 | 0.8420 | 0.8405 | 0.8448 | 0.8483
12 6 0.8612 | 0.8612 | 0.8803 | 0.8764 | 0.8769 | 0.8759 | 0.8741 | 0.8669 | 0.8632 | 0.8622
24 3 0.8689 | 0.8689 | 0.8873 | 0.8841 0.8826 | 0.8784 | 0.8721 | 0.8731 | 0.8687 | 0.8669
24 6 0.8876 | 0.8876 | 0.8993 | 0.8948 | 0.8960 | 0.8980 | 0.8796 | 0.8868 | 0.8649 | 0.8684
48 6 0.8789 | 0.8789 | 0.8948 | 0.8903 0.8940 | 0.8923 | 0.8813 | 0.8836 | 0.8736 | 0.8716
24 12 0.8853 | 0.8853 | 0.8965 0.9007 | 0.8908 | 0.8975 | 0.8821 | 0.8883 | 0.8756 | 0.8774
48 12 0.8871 | 0.8871 | 0.8838 | 0.8955 0.9022 | 0.8988 | 0.8883 | 0.8953 | 0.8779 | 0.8741
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L2 DISTANCE, DISTANCE WEIGHTED VOTING, 10 FOLD STRATIFIED

Neighborhood Size (k)
Angular (m) | Radial (n) 1 2 3 P 5 3 7 3 9 0
12 3 0.8542 | 0.8542 | 0.8587 0.8624 | 0.8515 | 0.8527 | 0.8425 | 0.8445 | 0.8465 | 0.8550
12 6 0.8642 | 0.8642 | 0.8831 | 0.8806 | 0.8771 | 0.8759 | 0.8739 | 0.8684 | 0.8627 | 0.8627
24 3 0.8739 | 0.8739 | 0.8861 | 0.8838 | 0.8861 | 0.8806 | 0.8769 | 0.8741 | 0.8672 | 0.8689
24 6 0.8896 | 0.8896 | 0.8993 | 0.8965 0.8940 | 0.8988 | 0.8799 | 0.8848 | 0.8649 | 0.8672
48 6 0.8821 | 0.8821 0.8978 | 0.8963 0.8920 | 0.8900 | 0.8784 | 0.8853 | 0.8749 | 0.8746
24 12 0.8866 | 0.8866 | 0.8970 0.9022 | 0.8908 | 0.8988 | 0.8816 | 0.8900 | 0.8751 | 0.8794
48 12 0.8903 | 0.8903 | 0.8893 0.9007 0.9010 | 0.9007 | 0.8873 | 0.8955 | 0.8803 | 0.8794





We can draw the following conclusions from the Table 4.s:

1. In most Table 4.s, with the increasing of parameters m and n, the classification accuracy in general improves. This can be explained by the following: when m and n increase, more complete shape information is extracted and stored in the feature vector for each ship region, thus providing a more accurate characterization of each region. In experiments based on stratified ten-fold cross validation, the maximum accuracy values shown in bold font reach a peak at {m = 24; n = 12}.

[image: image54.png]TABLE XVII

SUMMARY OF MAXIMUM VALUE OF ACCURACY IN EACH EXPERIMENT

Standard Voting

Distance-weighted Voting

Leave-one-out ten-fold stratified ten-fold || Leave-one-out ten-fold stratified ten-fold
Ly 0.9104 0.9062 0.9072 0.9104 0.9062 0.9072
Lo 0.9104 0.9022 0.9022 0.9104 0.9022 0.9022





2. Based on Table 4. XVII which summarizes the maximum accuracy values in all experiments, the maximum accuracy values obtained by using L1 distance outperform or equal the corresponding values obtained by using L2 distance.

3. Based on Table 4. XVII, the accuracy values obtained by using standard voting are almost the same as the corresponding values obtained by using distance-weighted voting. 

4. If L1 distance is used, the maximum accuracy values in Table 4.s V-X are achieved by setting the number of nearest neighbors (k) to 3. If L2 distance is used, the maximum accuracy values in Table 4.s XI-XVI are achieved by setting k to 4 or 5. The optimal value of k is set to 4 for two reasons. First, in Table 4.s XI-XVI the maximum accuracy value in ten-fold stratified cross validation is obtained by setting k=4. Second, in Table 4.s V-X, even though the maximum accuracy value in ten-fold stratified cross validation is obtained by setting k=3, the accuracy values with k=4 outperform the corresponding values with k=3 or k=5 in 5 out of 7 parameter configurations. In addition, the difference between the maximum accuracy value with k=3 (0.9072) and the corresponding one with k=4 (0.9057) is negligible.

5. When other factors and parameters are fixed, the classification performance based on leave-one-out cross validation is generally better than the performance based on ten-fold cross validation, and the classification performance based on stratified ten-fold cross validation is generally better than  the performance based on ten-fold cross validation. This is consistent with our expectation, since classifiers equipped with more information about each class tend to perform better.

6. The recommended parameters in this study are: m = 24 (the number of angular directions); n = 12 (the number of radial scales); k = 4 (the number of nearest neighbors). Since there is no significant difference between the performances of standard voting and distance-weighted voting, the former is recommended due to lower cost of computation. L1 distance is preferred to L2 distance for computing the similarity between ship regions.

4.4.6.2 Artificial Neural Network

We conduct ten stratified ten-fold cross validation on an artificial neural network for different parameters of m (the number of angular directions) and n (the number of radial scales). The cross validation process is repeated ten times so that a mean accuracy value can be computed. The results are reported in Table 4. XVIII.

The artificial neural network is a standard three-layer feed-forward network, with the hidden layer containing 100 neurons. The input layer consists of neurons corresponding to each component of the shape feature vector, and the output layer has six neurons that represent the six types of ships.

[image: image55.png]TABLE XVIIT

ARTIFICIAL NEURAL NETWORK, TEN-FOLD STRATIFIED

Angular (m)

Radial (n)

Cross Validation No.

1 2 3 4 5 6 7 8 9 10
12 6 0.8134 | 0.8234 | 0.8159 | 0.8259 | 0.8035 | 0.8234 | 0.8010 | 0.8010 | 0.8085 | 0.8085
24 3 0.8358 | 0.8159 | 0.8209 | 0.8383 | 0.8408 | 0.8234 | 0.8308 | 0.8383 | 0.8259 | 0.8408
24 6 0.8706 | 0.8756 | 0.8557 | 0.8706 | 0.8731 | 0.8507 | 0.8507 | 0.8582 | 0.8607 | 0.8657
48 6 0.8731 | 0.8657 | 0.8607 | 0.8657 | 0.8657 | 0.8607 | 0.8806 | 0.8507 | 0.8557 | 0.8756
24 12 0.9005 | 0.8856 | 0.8706 | 0.8557 | 0.8706 | 0.8856 | 0.8781 | 0.8682 | 0.8682 | 0.8856
48 12 0.8856 | 0.8781 | 0.8905 | 0.8881 | 0.9055 | 0.8756 | 0.8831 | 0.8806 | 0.8881 | 0.8905





4.4.6.3 Comparison of Performance

In order to fairly compare the classification performance between k-Nearest-Neighbor algorithm and artificial neural network, we apply the k-Nearest-Neighbor algorithm to the same set of stratified ten-fold random partitioning as in Table 4. XVIII, and report the results in Table 4. XIX using the same formats. This enables the application of the paired t-test, which is considered to be more sensitive than a standard t-test, where the partitioning may be different for different algorithms. For k-Nearest-Neighbor algorithm, we use the L1 distance with standard voting, and set the number of nearest neighbors to 4.

We summarize the process for computing paired t-test in Table 4. XX. Among the six parameter configurations, k-NN outperforms ANN at 99.9% confidence level in four cases. In the other two cases, k-NN outperforms ANN at 95% and 99% confidence levels, respectively.

In terms of computation time, ANN takes over one hour for running one ten-fold cross validation on a PC with Pentium4 2.4GHz CPU, while k-NN takes less than 2 seconds for the same procedure.

[image: image56.png]TABLE XIX

K NEAREST NEIGHBOR (K = 4), L1 DISTANCE, STANDARD VOTING, 10 FOLD STRATIFIED

Angular (m)

Radial

()

Cross Validation No.

1 2 3 4 5 6 7 8 9 10
12 6 08856 | 0.8955 | 0.8905 | 0.9055 | 0.8756 | 0.8831 | 0.8905 | 0.8781 | 0.8930 | 0.8831
24 3 0.8856 | 0.8955 | 0.8806 | 0.8980 | 0.8756 | 0.8930 | 0.8930 | 0.8831 | 0.8856 | 0.8831
24 6 09030 | 0.9055 | 0.8980 | 0.9154 | 0.8905 | 0.9030 | 0.9005 | 0.8955 | 0.9104 | 0.8980
48 6 0.8682 | 0.8756 | 0.8781 | 0.8756 | 0.8607 | 0.8682 | 0.8731 | 0.8706 | 0.8831 | 0.8781
24 12 09030 | 0.9030 | 0.9080 | 0.9129 | 0.9005 | 0.9055 | 0.9080 | 0.8930 | 0.9129 | 0.9104
48 12 0.8980 | 0.8930 | 0.8955 | 0.9030 | 0.8881 | 0.8881 | 0.9030 | 0.8905 | 0.9005 | 0.9005

TABLE XX
PAIRED T-TEST FOR COMPARING K-NN AND ANN
Angular (m) | Radial (n) || k-NN) | ANN(¥) | b= —~A— | Palue Conclusion
2/

12 6 08881 08124 | 00756 | 206836 0.001 | d> 0 at 99.9% confidence level
24 3 08873 | 08311 0.0562 13.2359 0.001 | d> 0 at 99.9% confidence level
24 6 09020 | 0.8632 | 0.0388 111428 0.001 | d> 0 at 99.9% confidence level
48 6 08731 08654 | 0.0077 | 2.0958 005 | d>0at 95% confidence level
24 12 09057 | 08769 | 00289 | 6.0179 0.001 | d >0 at 99.9% confidence level
48 12 08960 | 0.8866 | 0.0095 | 29279 001 | d>0at 99% confidence level








4.5 Conclusions and Recommendations

Object segmentation in the domain of marine surveillance is faced with the task of distinguishing between object of interest and complex moving background. We presented a hybrid method combining color-based single frame segmentation and change detection and classification based foreground segmentation. We evaluated the performance of the proposed method on a set of real marine surveillance sequences and presented a number of representative result frames. 

For Year 2, we will extend the tests on the proposed segmentation, detection, and tracking solution to include .... We will also work on refinements and improvements on the prototype, particularly fine-tuning for improved performance in coastline surveillance. Moreover, we will work on the integration with the object classification and recognition modules. Perhaps more importantly, we will conduct preliminary studies and investigation of the feasibility of applying biologically-inspired vision techniques to this problem. We will also continue our ongoing effort in studying some existing behavior recognition methods, and identifying their compatibility and likely modifications necessary for accommodation to the specific needs of our project.

In a complete visual surveillance system, object classification is an important component, since analysis of object behavior usually requires knowledge of the type and identity of the moving object.

In this project on coastline security, the objects of interest are ships. We have presented an empirical study on classifying 402 instances of ship regions into 6 types. The ship regions were extracted from surveillance videos and the 6 types of ships as well as the ground truth classification labels are provided by human observers. The shape feature of each region was extracted using the MPEG-7 region-based shape descriptor. We have applied two commonly used classification algorithms (k-Nearest-Neighbor algorithm and artificial neural network) and compared their performance based on the mean accuracy of ten stratified ten-fold cross validation.

For k-Nearest-Neighbor algorithm, we have performed combinatorial experiments to examine the effect of the following factors on classification performance: version of k-Nearest-Neighbor algorithm (standard voting or distance-weighted voting), type of distance measure (L1 or L2), and type of cross validation (leave-one-out or ten-fold or stratified ten-fold). The experimental results do not reveal any significant performance differences between standard voting and distance-weighted voting. L1 distance is preferred to L2 distance for computing the similarity of shape between ship regions, and the recommended number of nearest neighbors (k) is 4. The recommended parameters for the shape descriptor are: m = 24 (the number of angular directions); n = 12 (the number of radial scales). The classification accuracy of k-Nearest-Neighbor algorithm based on stratified ten-fold cross validation is about 91%, which compares favorably with existing work [17][18]. k-Nearest-Neighbor algorithm outperforms artificial neural network, and takes less computation time.

The proposed classification procedure based on MPEG-7 region-based shape descriptor and k-Nearest-Neighbor algorithm has the following advantages:

1) MPEG-7 region-based shape descriptor is robust to noise and tolerant to objects with holes and objects fragmented into several components. It can be applied to extract shape features from not only ships, but also other rigid objects, such as airplanes, vehicles, etc.

2) k-Nearest-Neighbor algorithm is scalable to the size of the data set. When new labeled cases are added to the case library, it is not necessary to re-build the classifier, which is often computationally expensive for other classification algorithms.

3) k-Nearest-Neighbor algorithm can provide a meaningful interpretation of the classification results by showing the similar cases retrieved from the library.

4) The computation cost of k-Nearest-Neighbor algorithm is reasonable in comparison to other algorithms.
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